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A B S T R A C T   

The bacterial diversity and corresponding biological significance revealed by high-throughput sequencing 
contribute massive information to source tracking of fecal contamination. The performances of classification 
models on predicting the fecal source of geographical local and foreign samples were examined herein, by 
applying support vector machine (SVM) algorithm. Random forest (RF) and Adaboost were applied for com-
parison as well. Discriminatory sequences were selected from Clostridiale, Bacteroidales, or Lactobacillales bac-
terial groups using extremely randomized trees (ExtraTrees). 1.51–12.64% of the unique sequences in the 
original library composed the representative markers, and they contributed 70% of the discrepancies between 
source microbiomes. The overall accuracy of the SVM model and the RF model on local samples was 96.08% and 
98.04%, respectively, higher than that of the Adaboost (90.20%). As for the non-local samples, the SVM assigned 
most of the fecal samples into the correct category while several false-positive judgments occurred in closely 
related groups. The results in this paper suggested that the SVM was a time-saving and accurate method for fecal 
source tracking in contaminated water body with the potential capability of executing tasks based on 
geographically unassociated samples, and underlined the necessity of qPCR analysis for accurate detection of 
human source pollution.   

1. Introduction 

Fecal contamination of the natural water body has been recognized 
as a global environmental and sanitation problem due to the wide 
presence of pathogenic bacteria in feces. Many prevalent epidemics in 
history (such as cholera) were shown to be associated with fecal pollu-
tion of drinking water. In the recent coronavirus disease (COVID-19) 
pandemic, scientists found several cases whose stool specimens tested 
positive to the virus (Guan et al., 2020), indicating that a possible mode 
of transmission of this infectious disease is through the digestive system 
(Iacucci et al., 2020). Quick and accurate recognition of microbial 
pollution source is essential for environmental management and con-
trolling public health risk since the severity of intestinal diseases caused 
by exposure of polluted water is closely related to the contamination 
source (Soller et al., 2010). For instance, wild birds and poultry have 
been shown to be the main contributors to Campylobacter pollution in 

surface water, which is the major pathogen accounting for human bac-
terial gastroenteritis (Mangen et al., 2015; Mulder et al., 2020). 

Historically, researchers had been endeavoring to evaluate fecal 
contamination by fecal indicator bacteria (FIB) such as Escherichia coli 
and Enterococcus spp. However, due to the wide existence of FIB in the 
intestinal tract of warm-blooded animals, they do not provide sufficient 
information for fecal source tracking (Roguet et al., 2018). With the 
development of the next-generation sequencing (NGS) technology, a 
series of studies about community-based microbial source tracking 
(MST) have been carried out recently (Cao et al., 2013; Neave et al., 
2014; Unno et al., 2012). In these studies, initial datasets were prepared 
by characterizing fecal communities in source samples using NGS of 
hypervariable regions of the 16S rRNA gene. Because of the differences 
in physiology characteristics and dietary habits, animals have developed 
distinctive intestinal microbiome during the long-term co-evolution 
with their intestinal microorganisms, and gradually formed unique 
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features for certain biotic populations. 
Recently, many studies focused on both the application of Source-

Tracker software on MST tasks and its performance under various li-
brary configurations (Ahmed et al., 2015; Brown et al., 2019; O’Dea 
et al., 2019). SourceTracker is a machine learning classifier based on 
Bayesian theory, which was designed to estimate the contribution of 
microbial contamination in “sink” samples from “source” samples 
(Knights et al., 2011). Although researchers have proved that Source-
Tracker can be a useful tool for determining sources of aquatic bacterial 
contamination (Brown et al., 2017), and it can even be able to detect 
low-level signatures of sewage sources in a catchment (O’Dea et al., 
2019), yet there are several limitations in the practical application of 
handling MST tasks: 1) Each new study using SourceTracker requires a 
large amount of time and resources to collect sufficient source and sink 
samples, thus restricting the feasibility to be widely utilized to some 
extent (Roguet et al., 2018). 2) SourceTracker cannot precisely analyze 
blinded freshwater samples spiked with source fecal material from a 
geographic region not represented in the initial library. In other words, 
local fecal samples (those collected from the same region/continent as 
the target samples) are required for the SourceTracker to build the initial 
library and assign host sources of new samples accurately (Staley et al., 
2018). 3) Bayesian-based SourceTracker model is more like a “black--
box”. It means that this software cannot give further explanations to the 
contributions of pollution sources, resulting in a weak interpretability of 
the model. 

For the above reasons, Roguet et al. (2018) firstly developed an 
alternative solution using random forest algorithm to classify fecal 
sources, offered a rapid and effective solution to differentiate host 
sources in environmental samples. However, it remained several ques-
tions to be investigated: 1) there are several widely-used supervised 
classification learning algorithms other than the random forest in the 
field of bioinformatics, including support vector machine (SVM), Ada-
boost, etc., and it is worth discussing whether these algorithms could 
perform better. 2) Whether these machine learning models can predict 
new samples (i.e. sink samples, which were collected from Australia in 
this study) using geographically non-local training set (i.e. source sam-
ples, which were collected from the USA in this study). Therefore, this 
work aims to evaluate the feasibility of a hybrid machine learning 
method (i.e. extremely randomized trees+ SVM) and compare the per-
formances of SVM, RF and Adaboost algorithms for identifying local and 
non-local samples based on local training libraries. 

2. Subjects and methods 

2.1. Data collection 

The raw sequencing files used for machine learning modeling and 
testing were obtained from the National Center for Biotechnology In-
formation (NCBI). Samples from dataset A were collected from Florida, 
California & Minnesota, the USA. This dataset consisted fecal samples 
from goose (n = 19, n represents the number of samples, the same 
below), gull (n = 13), chicken (n = 15), dog (n = 14), cat (n = 13), 
dairycow (n = 15), beefcow (n = 5), deer (n = 15), swine (n = 17) as well 
as primary treated wastewater (n = 16) (Brown et al., 2017, 2019; Staley 
et al., 2018). Samples from beaver (n = 5) and rabbit (n = 6) were used 
as negative controls (Brown et al., 2017). Besides, blinded freshwater 
samples spiked with fecal materials (n = 29) were included to test the 
identification ability for blinded sources. The detailed information on 
the preparation methods of these spiked samples was documented in 
previous studies (Brown et al., 2019; Staley et al., 2018) and summa-
rized in Tables S3 and S4. DNA was extracted from the samples of 
dataset A using the DNeasy PowerSoil DNA extraction kit (QIAGEN). 
Samples from dataset B were collected from Queensland, Australia, 
designed for testing the performances of models on predicting non-local 
samples. This dataset was comprised of chicken (n = 3), dog (n = 4), cow 
(n = 6), deer (n = 4), pig (n = 4) and untreated wastewater (n = 5) 

(O’Dea et al., 2019). DNA was extracted from the samples of dataset B 
using the QIAamp Power Fecal DNA Kit or the QIAamp Power Soil DNA 
Kit (QIAGEN). Amplicons of all the above samples were paired-end 
sequenced on the Illumina Hiseq 2500 (150 bp), and Miseq (300 bp). 
The sequencing results of dataset A are available under BioProject 
PRJNA377760 and PRJNA473286, and the accession numbers of the 
raw data of set B are SRP156322 & SRP118701. 

2.2. Bioinformatics 

The analysis of microbiome bioinformatics was performed with 
Qiime2 2019.7 (Bolyen et al., 2019). To ensure the consistency of 
length, the sequences obtained from the Illumina MiSeq platform runs 
were trimmed to 150 bp. Paired-end sequencing data was first demul-
tiplexed by q2-demux plugin followed by primers removal using the 
cutadapt plugin (Martin, 2011) with a maximum allowable error rate of 
0.2, all reads in which no primer was found were discarded. Low-quality 
base calls were filtered by q2-quality-filter (Bokulich et al., 2013). Clean 
sequences were processed by denoising with DADA2 (Callahan et al., 
2016) to remove chimeras, join pair-end reads, and generate the 
high-resolution table of amplicon sequence variants (ASVs) (Eren et al., 
2015) and representative sequences (Fig. S1). 

After data pre-processing and denoising, ASVs aligned with mafft 
(Katoh et al., 2002) were used to construct a phylogeny with fasttree2 
(Price et al., 2010). Rarefaction curves of alpha diversity indices 
(Figs. S2 and S3), beta diversity matrix by Jaccard dissimilarity, and 
Principal Coordination Analysis (PCoA) were produced or performed 
with q2-diversity plugin at the sampling depth of 32,000. Permutational 
multivariate analysis of variance (PERMANOVA) (Anderson, 2001) was 
conducted using R vegan. A sklearn Naïve Bayes machine learning 
classifier (q2-feature-classifier (Bokulich et al., 2018)) was used to 
assign taxonomy to each representative sequence. Firstly, the V5-V6 
region of the 16 S rRNA gene (250 bp) was extracted from Greengenes 
13_8 99% reference database (McDonald et al., 2012), then the Naïve 
Bayes classifier was trained using the reference reads just created. 
Finally, the classifier was used to predict the bacterial taxonomy of each 
ASV. 

2.3. Modeling 

2.3.1. Machine learning algorithms 
Support vector machine (SVM) is a set of machine learning algo-

rithms used for data mining tasks involved in classification and regres-
sion, developed by Vapnik (2013). SVM has been successfully utilized in 
many fields such as computer vision (Grauman and Darrell, 2005), and 
bioinformatics (Byvatov and Schneider, 2003; Dorff et al., 2010; Wang 
et al., 2019), etc. Compared to other methods, SVM 1) appears to be 
effective in handling high dimensional space, even where the number of 
dimensionalities (features) is greater than the number of samples, and 2) 
has a strong generalization ability, which means the SVM model could 
obtain satisfactory performance for predicting unknown samples (Ye 
et al., 2020). Based on the above pros, it could be hypothesized that the 
SVM model can achieve a good performance on community-based MST 
due to the presence of massive bacterial species in the fecal and envi-
ronmental samples. Besides, the SVM only uses a subset of points in the 
training dataset (i.e. support vectors), so it is also a time-saving and 
memory-efficient algorithm (Vapnik, 2013; Zendehboudi et al., 2018). 

For a binary classification task, it is intuitive to find a decision 
boundary that is “right in the middle” of the two types of sample points, 
because this boundary is most capable to tolerate the disturbances of 
samples. In other words, the classification performance of this boundary 
is hypothesized to be the most robust measure and has the strongest 
generalization ability for predicting new samples. According to the 
study via Boser et al. (1992), given training data(xi, yi) ∈ D, the basic 
idea of the SVM is to solve the following optimization problem: 
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min
w.b

1
2
‖ω‖

2
+ C

∑N

i=1
ξi

subject to : yi(ωT Φ(xi) + b) ≥ 1 − ξi, i = 1, 2,…,N

(1)  

Where ω is the normal vector of the decision boundary, Φ maps xi into a 
higher dimensionality using kernel trick, ξ and C are the relaxation 
variable and the regularization parameter, respectively. The boundary is 
only determined by several sample points (i.e. support vectors) in the 
outside of two classes. 

The theory about random forest has been described in detail by 
Roguet et al. (2018) previously. In simple terms, when each decision tree 
in the forest growing, the split of nodes is determined by the maximum 
of mean decrease impurity (gini index). Therefore, an advantage of 
tree-based methods (including random forest) is that they could provide 
the degree of contribution for each feature (i.e. ASV) in differentiating 
two classes. In this study, extremely randomized trees (ExtraTrees) were 
practically used instead of random forest. When splitting nodes, random 
forest and ExtraTrees both use a subset of columns (features). However, 
the ExtraTrees randomly draw thresholds for each candidate feature and 
select the best of these thresholds as the splitting rule instead of directly 
selecting the most discriminative thresholds (like random forest does), 
to further introduce randomness (Geurts et al., 2006). This usually leads 
to an increase in the capability of generalization, but a slight increase in 
bias as expense (Geurts et al., 2006). 

Adaboost is one of the most popular boosting ensemble algorithms, 
which was introduced by Freund and Schapire (1997). Simply speaking, 
the core idea of boosting is to fit a series of weak models (i.e., those are 
slightly better than random guessing) on modified versions of the data. 

The predictions from all of them are then combined through a weighted 
majority vote of these weak models to produce the final judgment. After 
each iteration, the algorithm will assign a larger weight to the mis-
classified samples in the previous iteration (so-called the modified 
version of data) to boost the performance of the ensemble model. 

2.3.2. Supervised learning classification 
A hybrid method of ExtraTreesClassifier + SVM Classifier was used 

herein. The modeling of supervised learning classification comprised 
two steps: Firstly, ExtraTrees were used to select the most important 
representative ASVs in discriminating one source from all other sources 
(Roguet et al., 2018). Simply speaking, for each candidate source, all 
samples were divided into two groups: samples belong to this candidate 
source and samples belong to other sources, a model was built to classify 
the two classes using ExtraTreesClassifier and generate importance in-
dexes for all the ASVs, and selecting the most important ones (Fig. 1). 
After feature selection, every source was composed of ASVs that only 
appeared in samples of the corresponding source (host-specific) or ASVs 
of which abundances in these samples are significantly different from 
other sources (abundance-preferred). These are the most reliable in-
dicators for differentiating two classes. Secondly, the SVM was used to 
build a classification model (base classifier) for each source using the 
representative ASVs mentioned above to generate a hyperplane (deci-
sion boundary) (Fig. 1). When the pollution source of an unknown 
sample A was to be predicted, the sequences matching the representative 
sequences in the classifier were extracted to compute the relative loca-
tion of sample A in the sample space. There were two possibilities: 1) 
sample A located in the region of the corresponding source, 2) sample A 

Fig. 1. Schematic diagram describing feature selection and SVM modeling processes.  
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located in the region of other sources. They corresponded to two judg-
ments respectively: 1) sample A was polluted by this type of source, 2) 
sample A was not polluted by this type of source (Fig. 1). The distance 
from the decision boundary indicated the confidence of the judgment: 
the further the distance, the more likely it was to make a correct judg-
ment. Each base classifier only focused on a subset of ASVs that was 
highly related to the corresponding source and independently judged 
the existence of candidate pollution sources. The overall result was 
composed of the outputs of all base classifiers (Fig. 1). 

The models were all developed under Python Scikit-learn (sklearn) 
programming environment (Pedregosa et al., 2011). ExtraTrees model 
composed of 500 trees was created under default settings of ExtraTree-
sClassifier function in sklearn ensemble module to generate gini index 
(importance index), all the ASVs importance indices were sorted 
descendingly and then added up, the top 70% of the sum were selected 
(Fig. S2). Then the relative abundances of selected ASVs were calculated 
and the data were standardized using scale function in sklearn pre-
processing module. The SVM model was built using sklearn svm.svc 
function, the rbf kernel (Gaussian kernel) was chosen. To estimate the 
probability for predicting unknown samples, the distance parameter 
generated by the API descision_function was mapped to 0–1 using the 
sigmoid function: 

Sigmoid =
1

1 + e− x (2) 

The configuration of hyper-parameters of all the base classifiers was 
optimized by the RandomizedSearchCV function in the sklearn model- 
selection module, which used the accuracy rate as the estimator: 

Accuracy =
TP + TN

TP + FP + TN + FN
(3)  

Where TP, FN, FP, TN represent the amount of true-positive, false- 
negative, false-positive and true-negative predictions, respectively. To 
evaluate the performances of base classifiers on the test dataset, metrics 
including precision, recall and F1 score were also adopted: 

Recall =
TP

TP + FN
(4)  

Percision =
TP

TP + FP
(5)  

F1 =
2 × Percision × Recall

Percision + Recall
(6) 

Besides, the macro-average strategy was considered to evaluate the 
overall performances of the models (i.e. the mean recall/precision rate 
of all base classifiers). 

The running time of the modeling program of SVM, RF and Adaboost 
was listed in Table S5. 

3. Results 

3.1. Bacterial community profile and sample dissimilarity 

The hosts of fecal samples included goose, chicken, gull, deer, cow 
(beef cow and dairy cow), swine, cat, dog, wildlife animals (beaver and 
rabbit) and urban wastewater, these samples were collected in Minne-
sota, the US and southeast Queensland, Australia. As for American 
samples, the taxonomic analysis for bacterial community composition 
revealed different characteristics of the microbial distributions from 
different host animals (on order level) (Fig. S5). The top 3 abundant 
orders were Clostridiales (41.03% ± 25.36%), Bacteroidales (16.21% ±

14.79%), and Lactobacillales (9.26% ± 18.73%). In general, Clostridiales 
spp. and Bacteroidales spp. were prevalent in all fecal samples except for 
gulls, part of samples from chicken and gulls were dominated by Lac-
tobacillales spp. The abundance of the above three orders accounted for 

most of the overall bacterial community (66.50% ± 26.60%) in fecal 
samples (Fig. S5). Other bacterial orders only dominated in specific 
hosts, for example, sequences that were classified as Erysipelotrichales 
spp. were found to be abundant from pet samples (dogs and cats), and 
the dominance of Turicibacterales was only found in the feces of dogs. 

Other than the results of taxonomy, PCoA using Jaccard dissimilarity 
clearly showed the separation and clustering of samples within and 
between host groups on the ASV level (Fig. 2). The first three co-
ordinates accounted for 7.513%, 5.893%, and 5.016% of the total 
variance, which indicated that a certain part of the fecal samples was 
highly correlated considering that there were 153 sample points in the 
matrix. The samples from ruminant hosts including deer and cow were 
distributed alongside axis 1, whereas dogs, cat, and poultry (geese, gulls, 
and chickens) were linearly distributed in the plane consisting of axis 2 
and axis 3. Also, the location of swine samples indicated that the mi-
crobial community composition of these samples was significantly 
different from other samples. Pairwise Adonis test confirmed the sig-
nificant differences (p < 0.05) among host groups as well. 

3.2. Feature selection for each classifier 

Due to the prevalent and abundant presence of Clostridiale, Bacter-
oidales, and Lactobacillales in fecal samples, sequences belong to these 
orders were selected as candidates for feature selection. In consideration 
of the practical application, samples from nine fecal sources including 
dog, cow, cat, deer, gull, goose, chicken, swine, and wastewater were 
used to create eight classifiers (merging goose and chicken samples to 
create a “poultry” classifier). The number of ASV taxonomically classi-
fied as Clostridiale, Bacteroidales, or Lactobacillales was 2849, filtered 
from 51,099 ASVs of the original dataset. Each classifier was built by the 
most representative sequences selected by the extremely randomized 
trees. The importance index of each ASV and the decrease curves were 
plotted in Fig. S6, and the red points represented the position of the 
threshold of each classifier. The rapid decline of gini index, ranging from 
0 to 500, indicated that the contribution of a small part of feature se-
quences was enough for differentiating a group of samples from others. 
The numbers of ASVs forming each classifier were 360 (poultry), 176 
(cow), 170 (deer), 109 (dog), cat (66), swine (163), 43 (gull), and 53 
(wastewater), respectively. 

The PCA of all samples in each classifier was shown in Fig. 3. The 
total proportions of PC1 and PC2 in the total variance were between 
18% and 83%, and the sample points from the corresponding source and 
other sources were completely linearly separable (except for the poultry 
classifier) in the plane consisted by the PC1 and PC2. Fig. 4b revealed 
the absolute abundances of ASVs (mean value) in each fecal source that 
were included in the corresponding classifier, in other classifiers, and 
not included in any classifier (explained by Fig. 4a), indicating that 
nearly half of the total abundance of the samples was responsible for 
discriminating a source from other sources. The abundances of se-
quences included in the corresponding classifier were higher than the 
sequences included in other classifiers. The distribution of shared ASVs 
between classifiers was visualized by Fig. 4c. The diagonal values rep-
resented the number of unique ASVs in each classifier, which showed 
that the major part (expect for gull and wastewater) of selected ASVs 
was host-specific. Other than these host-specific ASVs, Fig. 4b and c also 
suggested that the host-preferred ASVs occupied a certain proportion of 
the classifiers, these sequences represented those existed in multiple 
sources, but with different abundance patterns. 

3.3. Performance of supervised learning algorithms on local and non-local 
samples 

As described in Fig. 1, SVM models were applied after feature se-
lection, RF and Adaboost classification models were also applied and 
tested for comparison. The original dataset obtained from the USA was 
randomly split into a training dataset (n = 102) and a test dataset 
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(n = 51) (Table S1). The randomness of splitting was proved by PCoA 
(Fig. S4) and Adonis test (p = 0.991, Table S2) between training and test 
datasets. They were used for the supervised learning process and the 
evaluation of the prediction performances, respectively. The counts of 
TP, FP and FN judgments by each classifier of each model were pre-
sented in Fig. 5a and recorded in Tables S9, S10 and S11 in detail. The 
overall performance of each model was shown in Fig. 5b. Generally 
speaking, the overall accuracy of the SVM model (96.08%) was close to 
that of the RF model (98.04%), exceeding that of the Adaboost model 
(90.20%). The difference between the SVM model and the RF model was 
that the SVM model was biased towards a higher false-positive rate, 
while the RF model was biased towards a higher false-negative rate. In 
other words, the SVM model had a higher recall rate while the RF model 

had a higher precision rate (Fig. 5b). Comparing the confidence levels of 
the SVM and the RF model for the prediction of the local U.S. samples 
(Tables S6 and S7), the probability values of correct judgments of the RF 
model were significantly higher than those of the SVM model (paired- 
sample T-test, p < 0.05), which further proved that the precision of RF 
model was higher, and it was more resistant to the false-positive judg-
ments. In addition, beaver and rabbit samples were used as negative 
controls to test the specificity of the models. All 11 wildlife samples were 
correctly identified as “other sources” by SVM and RF models, three 
beaver samples were misclassified as dog by the Adaboost model 
(Tables S6, S7 and S8). 

As for geographically non-local samples (from Australia), the 
threshold confidence of positive judgments was considered to be slightly 

Fig. 2. Principal coordinates analysis using Jaccard dissimilarity matrix for all fecal samples collected in Minnesota, the United States of America.  

Fig. 3. PCA for the distribution of all samples in each classifier (the red line represents the linear decision boundary of two categories). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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a

b

ASVs from all fecal samples

ASVs selected 
by classifier A

ASVs selected 
by other classifiers

ASVs from
sample A 
(belongs to the same 
category as classifier A)

Included in
the classifier

Included in
other classifiers

Not included in 
any classifiers

c

Shared ASVs 
between classifiers

Fig. 4. (a) A Venn diagram that explains the meanings of “included in the classifier”, “included in other classifiers”, “not included in any classifiers” and “shared ASVs”. 
(b) The absolute abundances of sequences belonging to the corresponding classifier, other classifiers or not belonging to any classifiers. (c) The numbers of shared 
ASVs between classifiers. The diagonal values represented the number of unique ASVs in each classifier. 

Fig. 5. (a) The performances of eight base classifiers of SVM, RF and Adaboost on the prediction of unknown fecal samples (local U.S.). To magnify the visual ratio of 
true positives, false negatives and false positives, the absolute numbers of true-negative judgments were excluded. (b) The overall performances of SVM, RF and 
Adaboost classifiers on the prediction of unknown fecal samples (local U.S.). 
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adjusted to 45%, in order to increase the recall rate of models. According 
to the prediction results, there were significant differences among the 
performances of SVM, RF, and Adaboost models on classifying these 
samples. Specifically, if cat and dog samples were considered to be in the 
same “pet” group, deer and cow samples were considered to be in the 
“ruminant animal” group, 20 (out of 21) animal fecal samples were 
classified correctly and/or classified as the source in the same group as 
the correct judgments by the SVM model (Table 1). Only five samples 
including three chicken samples and two dog samples were classified 
correctly by the RF samples, the rest were all false negatives. Mis-
classifications on three chicken samples and two cow samples occurred 
for the Adaboost model. Unfortunately, all three algorithms could not 
classify Australian sewage water samples correctly (Table 1). These re-
sults suggested that the SVM was most powerful among the three algo-
rithms on the task of classifying geographical non-local samples. 

3.4. Tracking the source of fecal pollution in environmental samples using 
the SVM model 

The performances of the SVM model on environmental samples and 
artificial spiked water samples (simulating contaminated water) were 

tested and presented in Table 2. All freshwater samples showed no 
signature of contamination with animal feces or urban wastewater. 
Compared to other sources, Lakewater1, Lakewater4, Lakewater5, and 
Spikedwater02 were most likely to be polluted by poultry feces, but the 
probability values given by the model did not exceed 40% (Table 2). The 
contamination type of most of the artificial spiked water samples could 
be identified correctly by the SVM classifier, even when the proportion 
of contamination material was at a relatively low level (Table 2). As 
suggested by Spikedwater22, Spikedwater15, and Spikedwater28, when 
the animal sources existed, the pollution signature of them could cover 
the wastewater, causing the SVM to fail to identify sources of pollution 
from wastewater. But if wastewater was the only positive source of 
pollution, it could be accurately identified by the model (Table 2). In 
addition, the predictive results of the RF and Adaboost models on these 
samples were listed in Tables S12 and S13 for comparison. It can be seen 
that the RF and the Adaboost model were prone to the category of 
poultry (the phenomenon was extremely obvious with regard to the 
Adaboost model), resulting in more false-positive judgments in this 
category. Besides, the ability of the RF model on identifying the signal of 
cow and dog feces in water samples was weaker than that of the SVM 
model (Table S12). 

4. Discussion 

4.1. The representative ASVs in specific bacterial orders provided 
sufficient microbial information for fecal identification 

It has been well established that the tremendous diversity of intes-
tinal bacterial composition is due to complicated interactions among 
factors of diet, geography, physiology, age (Bonder et al., 2016; Nishida 
and Ochman, 2018; Tigchelaar et al., 2016; Zhernakova et al., 2016), 
etc. The gut microbiome tends to adapt and assist in the metabolism 
processes of the host during long-term co-evolution. Nishida and Och-
man (2018) pointed out that it was possible to differentiate hosts by 
their gut microbiomes even among recently diverged species with 
similar diet preferences. Since Jaccard dissimilarity was defined as the 
ratio of the intersection to the union of two sets (Hamers et al., 1989), 
the microbial structure presented in Fig. S1 could explain the clustering 
and separation of fecal samples showed in Fig. 2. For instance, chickens, 
geese and gulls tended to gather in similar positions (Fig. 2), which may 
be related to their shared order Lactobacillales and the species within, 
consistent with previously published work (Wei et al., 2013). Besides, 
the samples of domestic pets (dogs and cats) contained Erysipelotrichales, 
proved herein and in previous literature (Ahmed et al., 2015). This may 
result in a relatively close biological distance between these two groups, 
whereas the specific dominance of Turicibacterales in the feces of dogs 
may lead to the isolation of this category (Figs. S1 and Fig. 2). 

Other than the orders mentioned above, the most abundant bacterial 
orders were Clostridiales and Bacteroidales in most fecal samples (Fig. 2). 
They were reported to be reliable groups that provided information for 
discriminating fecal sources (McLellan and Eren, 2014; Roguet et al., 
2018). The strategy of focusing on a narrow taxonomy may have mul-
tiple practical advantages: 1) Although Staley et al. (2015) reported that 
the displayed taxonomic biases caused by different DNA extraction 
methods did not impact the overall biological conclusions drawn, this 
strategy can possibly minimize the impact of external factors (i.e. sample 
collection and sample processing (Knight et al., 2018)) and ensure the 
robustness of the model. 2) It could help to reduce unnecessary and 
redundant information produced by rarely appeared ASVs. 3) It may 
eliminate the impacts of bacterial assemblages that are prevalent in the 
environment in the identification of contamination source. 

However, the problem is how to choose a suitable bacterial assem-
blage to perfectly balance the coverage of the bacterial library and the 
advantages mentioned above. According to the results of taxonomic 
annotation, the relative abundances of sequences belong to Clostridiales 
and Bacteroidales in the samples obtained from gulls were less than 5%, 

Table 1 
The prediction results of SVM, RF and Adaboost classifiers on unknown samples 
(Australia non-local)c.  

Sample id SVM RF Adaboost 

chickenAus1 Poultry (63.70%)a Poultry 
(77.23%)a 

Poultry (59.10%) +
Dog (45.20%) 

chickenAus2 Poultry (55.15%)a Poultry 
(72.75%)a 

Poultry (60.77%) +
Dog (45.27%) 

chickenAus3 Poultry (52.58%)a Poultry 
(71.05%)a 

Poultry (60.77%) +
Dog (45.27%) 

cowAus1 Cow (54.81%)a — Cow (73.10%)a 

cowAus2 Cow (56.93%)a — Cow (73.10%)a 

cowAus3 Cow (56.56%)a — Cow (73.10%)a 

cowAus4 — — Poultry (47.27%) +
Dog (45.20%) 

cowAus5 Cow (56.16%)a — Cow (73.10%)a 

cowAus6 Cow (56.07%)a — Dog (45.52%) 
deerAus1 Deer (53.40%) + Cow 

(48.23%)b 
— Deer (73.10%)a 

deerAus2 Deer (55.61%) + Cow 
(49.32%)b 

— Cow (73.10%) 

deerAus3 Cow (52.02%) + Deer 
(47.59%)b 

— Cow (73.10%) 

deerAus4 Cow (45.71%) + Deer 
(45.44%)b 

— Cow (73.10%) + Deer 
(73.10%)b 

dogAus1 Dog (57.89%) + Cat 
(52.87%)b 

Dog 
(71.06%)a 

Dog (53.74%)a 

dogAus2 Dog (58.68%)a Dog 
(54.26%)a 

Dog (56.54%)a 

dogAus3 Dog (51.07%)a — Dog (53.52%)a 

dogAus4 Dog (54.85%)a — Dog (56.34%)a 

pigAus1 Swine (61.29%)a — Swine (73.10%)a 

pigAus2 Swine (60.88%)a — — 
pigAus3 Swine (59.71%)a — — 
pigAus4 Swine (57.94%)a — — 
sewageAus1 — — — 
sewageAus2 — — — 
sewageAus3 Cat (48.86%) +

Wastewater (45.31%) 
— Dog (73.10%) +

Poultry (46.88%) 
sewageAus4 Cat (53.31%) +

Wastewater (47.58%) 
— — 

sewageAus5 — — Poultry (47.27%) +
Dog (45.20)  

a Judgments that were correct. 
b Correct judgment and false-positive judgment occurred at the same time, but 

the false-positive judgments only occurred in the same animal group as the 
correct judgments. (Cat and dog were considered as domestic pets, deer and cow 
were considered as ruminant animals) 

c Judgments with probability value ≥ 45.00% were defined as positive and 
presented in this table. 
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but the abundances of Lactobacillales were up to 85%, which agreed with 
a previous study (Ahmed et al., 2015). Therefore, using only Clostridiales 
or Bacteroidales to build the classifiers was inappropriate, because the 
abundances of these bacteria could be greatly affected by external 
conditions. Comparing the accuracies on classifying local samples using 
RF model in this work and previous work (Roguet et al., 2018), selecting 
ASVs from Clostridiales, Bacteroidales and Lactobacillales assemblages 
could be a relatively proper choice. Despite the limited research results 
of present and a previous study (Roguet et al., 2018), it is necessary to 
further investigate the status of representative bacterial assemblages for 
MST tasks in future research. 

According to the decreasing curve of importance indexes generated 
by the ExtraTrees Classifier (Fig. S2), 1.51–12.64% of the unique se-
quences provided 70% of the information in discriminating one source 
from others, i.e. a quite small number of bacteria species or strains 
represented most of the characteristics of a certain category. Through 
the study of these ASVs, a major proportion of them were found to be 
host-specific instead of host-preferred (Fig. 4c), and the host-specific 
ASVs were believed to offer more accurate classification due to their 
exclusive presence pattern. Besides, it is worth noting that the dominant 
status of these host-specific species in quantity happened to ensure the 
independent judgment of each base classifier to a certain extent, which 
helped the overall model to handle water samples with multiple pollu-
tion sources. The important status of selected ASVs in the fecal micro-
biome could be suggested by the fact that up to 50% of the absolute 
abundances of the total bacterial community were comprised of these 
sequences (Fig. 4b). The effectiveness of classification modeling based 
on the information entropy theory was reflected not only by the low 
error rate of the training samples but also the distribution pattern of the 
samples visualized by PCA. According to Fig. 3, the variance obtained by 
only the first two principal components contributed sufficient 

information to make it linearly separable for two categories, proving 
that these representative ASVs were important and reliable indicators of 
a certain pollution source. 

4.2. Comparison of SVM model and sourcetracker toolbox on the 
application of identifying non-local samples 

The average similarities of the bacterial community among the same 
species of which fecal samples were collected from different geograph-
ical locations were evaluated to be less than 20% by SourceTracker 
(Staley et al., 2018), indicating that this software showed unsatisfactory 
ability to characterize fecal samples without a geographically associated 
sample library. It has been well documented that geographic region has 
a great impact on the gut microbiome composition of the same animal 
host (Lozupone et al., 2012; Yatsunenko et al., 2012), resulting in the 
difficulties of source identification for samples from another location. As 
a matter of fact, we observed significant differences (p < 0.01) between 
Australian and U.S. samples as well by conducting pairwise Adonis tests 
(Table S14). However, the statistical parameter indicated that the 
microbiome differences between the same host from two locations (e.g. 
Australian dogs/U.S. dogs) were relatively smaller than different hosts 
(e.g. Australian dogs/U.S. cats) as shown by the relatively smaller F 
value (Table S14). There existed the probability that the distinctions in 
diet and intestinal factors between the same species in different loca-
tions were less than those between different species, which might 
explain this phenomenon. This fact suggested that it was possible to 
identify the source of fecal contamination for foreign samples with a 
statistical method. In this study, the SVM model successfully classified 
most of the fecal samples into the correct category or a closely related 
category, showing the powerful capability of generalization of this al-
gorithm. As documented in previously published article (Staley et al., 

Table 2 
Prediction results for 29 freshwater or artificial spiked water using SVM classifier.  

Sample id Type of contamination Proportion of contamination material % vol/vol Prediction results Source with max probability 

Lake water1 None/Unknownd — — Poultry (36.67%) 
Lake water2 None/Unknownd — — Wastewater (35.54%) 
Lake water3 None/Unknownd — — Gull (38.48%) 
Lake water4 None/Unknownd — — Poultry (31.35%) 
Lake water5 None/Unknownd — — Poultry (38.50%) 
Lake water6 None/Unknownd — — Gull (34.05%) 
Spiked mesocosm1 WWTPe 30.0 Wastewatera Wastewater (52.02%) 
Spiked mesocosm2 WWTPe 30.0 — Wastewater (37.86%) 
Spiked mesocosm3 WWTPe 30.0 Wastewaterc Wastewater (42.94) 
Spiked mesocosm4 WWTPe 30.0 — Gull (37.58%) 
Spiked mesocosm5 Cow 10.0 Cowa Cow (59.51%) 
Spiked mesocosm6 Cow 10.0 Cowa -Deera Cow (59.76%) 
Spiked water10 Dog 1.0 Dogc Dog (40.79%) 
Spiked water08 WWTPf 10.0 Wastewatera Wastewater (55.51%) 
Spiked water06 WWTPf 0.1 Wastewatera Wastewater (52.12%) 
Spiked water21 Cat 0.1 Cata Cat (56.20%) 
Spiked water22 Dog + WWTPf 0.5 + 0.5 Dogb Dog (45.89%) 
Spiked water19 Cat 10.0 Cata Cat (52.35%) 
Spiked water17 Cow + WWTPf 0.5 + 0.5 Cowa -WWTPc Cow (50.76%) 
Spiked water15 Dog + WWTPf 0.05 + 0.05 Doga Dog (52.50%) 
Spiked water16 Cat 1.0 Cata Cat (52.87%) 
Spiked water33 Cow 0.1 Cowa Cow (51.91%) 
Spiked water13 Dog + WWTPf 5.0 + 5.0 — Wastewater (27.45%) 
Spiked water29 WWTP 1.0 Wastewatera Wastewater (53.07) 
Spiked water31 Cow 10.0 Cowa Cow (58.99%) 
Spiked water25 Dog 10.0 — Dog (38.84%) 
Spiked water28 Cat + WWTPf 0.5 + 0.5 Cata Cat (55.33%) 
Spiked water04 Cow 1.0 Cowa -Deerc Cow (58.54%) 
Spiked water02 None/Unknownd — — Poultry (31.48%)  

a Representing the probability value generated by SVM model higher than 50%. 
b Representing the probability value generated by SVM model between 45% and 50%. 
c Representing the probability value generated by SVM model between 40% and 45%. 
d Representing the samples that were obtained from natural water body, they were not contaminated or the contamination source was unknown. 
e Representing untreated secondary wastewater effluent 
f Representing primary-treated influent from wastewater treatment plants 
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2018), highly abundant bacteria were identified as potentially 
discriminatory species and they were crucial markers contributing to the 
predictions of unknown samples as determined by SourceTracker. 
However, less abundant species may largely account for the particularity 
of one source (Holmes et al., 2012). Therefore, due to the characteristic 
of highly specific but less sensitive source identification, the 
Bayesian-based SourceTracker tool may have a lower generalization 
ability that could not enable it to accurately identify the source with a 
different microbiome (i.e. geographically non-local situation). 

However, the limitations and uncertainties of the machine learning 
models involved in this study should be presented: 1) The prediction 
results of models were obviously prone to classifiers with higher 
coverage of ASVs. As shown in Tables S12 and S13, the RF and the 
Adaboost model were prone to output false-positive results of poultry 
due to the higher number of features selected by the poultry classifier. 
Balancing the number of ASVs and the contribution represented by these 
bacteria should be considered in the future. 2) Limited by the principle 
of algorithm, compared with the SourceTracker based on the Bayesian 
probability estimation theory, the SVM model in this article was difficult 
to provide the contribution rate of each source to the overall microbial 
pollution. Although Roguet et al. (2018) have tried to use the proportion 
of bacterial abundance of source samples contained by the sink sample 
to represent the contribution of pollution, the statistical significance of 
such characterization method still needs to be further explored. 3) Due 
to the limited types of available samples in this study, other configura-
tions of samples with multiple pollution sources have not been 
convincingly verified in this study (Table 2), which should be further 
investigated in the future. 

4.3. Maximize the recall of data to track the fecal contamination source 
using SVM algorithm on samples in hand 

The continuing development and reduction of cost of the next- 
generation sequencing (NGS) prompted the researchers in the field of 
MST to pursue new biomarkers and methodologies (Holcomb and 
Stewart, 2020). The ability of NGS-MST to distinguish fine differences 
between pollution sources has been proved by several studies (Bauza 
et al., 2019; Staley et al., 2018). 

In this study, the SVM algorithm showed its superior performance on 
the MST task using the community-based method. In the theory of sta-
tistical learning, the recall rate and the precision rate are negatively 
related in general cases (Mehta et al., 2019). In other words, the 
decrease in false-positive judgments often brings about the increase in 
false-negative classifications. It should be recognized that in the 
particular task of fecal source tracking, the cost for false-negative 
judgments (i.e. missing true contamination source) can be much 
greater than false-positive judgments. Therefore, we need to pursue the 
maximization of recall and accuracy rate in the application of MST based 
on machine learning algorithms. RF classifier was proved to be a robust 
model that could precisely locate a fecal sample, but it was also poor to 
capture the weak sign of feces in an unknown sample (Fig. 5 and 
Table S12). The performance of RF on the non-local dataset also sup-
ported this hypothesis (Table 1). In contrast, despite a few false-positive 
judgments occurred in closely related categories, the SVM model ach-
ieved the recall rate of 100% on predicting local samples, proving that it 
was a suitable choice among commonly-used algorithms. 

It should be noted that all three models performed poorly in identi-
fying non-local wastewater samples and the wastewater signatures in 
spiked water samples (Tables 1 and 2). In addition to the microbiome 
discrepancy due to the geographical inconsistency, different sampling 
section of the wastewater treatment plant (WWTP) may be an important 
reason (Table S4), due to the significant difference of bacterial com-
munity in each process (Cai et al., 2014). Therefore, validation by qPCR 
to assist the detection of human fecal signatures could be necessary. For 
example, human mitochondrial DNA was reported to be a promising 
target for fecal source tracking due to the high sensitivity and specificity 

(Holcomb and Stewart, 2020). Simply using this kind of markers as a 
means of verification for human fecal contamination or combining with 
the observation matrices of other sources for machine learning classifi-
cation may significantly raise the detection rate of human source 
pollution (O’Dea et al., 2019). 

As an economic bioinformatics application of sequencing the V5-V6 
region of the 16S rRNA gene, the limited interpretation ability of the 
amplicon data may not represent all of the underlying biological sig-
nificances (Zhang et al., 2018). Although the SVM model algorithm can 
be used for data mining tasks to reach the touchable ceiling of accuracy 
and recall rate, increasing the resolution and quality of the information 
hidden in the microbial complexity may dramatically improve the per-
formance of the model. Therefore, taking the advantages of the 
enhanced ability to detect the diversity of bacterial composition and the 
functional profiles offered by Illumina metagenomics sequencing (Col-
ston and Jackson, 2016) and more portable long-read sequencing plat-
forms to characterize fecal pollution (Hu et al., 2018) could be an 
interesting future direction in community-based microbial source 
tracking. 

5. Conclusion 

This study demonstrated a community-based method for fecal 
pollution source tracking in water body using support vector machine 
algorithm. On the premise of high similarity and exclusivity of the 
microbiome in the same host, the SVM classifier can be an effective tool 
for source identification with the extension for assessment of large-scale 
high-throughput sequencing data. The usage of tree-based algorithm 
provided a group of highly discriminatory biomarkers for source iden-
tification. It eliminated much of the noise in the initial ASV matrix and 
promoted the robustness of the model. The SVM model was proved to be 
effective to identify fecal samples collected in Australia using training 
dataset that was comprised of U.S. samples, but the combination of 
qPCR analyses of marker genes and the community-based method is still 
necessary for the confirmation of human-sourced fecal pollution. For the 
need of rapid computational methods with low-resource demands, SVM 
classification method could serve as a useful tool for assessment of 
pathogen risk in the environmental water body, source forensics, 
emergency treatment, and medium/long-term pollution monitoring and 
control. 
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